

ASC Student Supercomputer Challenge 2025

Preliminary Round Announcement

Dear ASC25 Teams:

Welcome to the 2025 edition of ASC Student Supercomputer Challenge ASC25!

The ASC Student Supercomputer Challenge (ASC25) marks its 13th year as the world's largest

supercomputing hackathon, continuing its mission to cultivate young talent and drive innovation in

Supercomputing and AI. Since its launch at SC24 on November 21, 2024, ASC25 has attracted

immense interest, with hundreds of teams registered to compete. The competition progresses to its

Preliminary phase on January 6, 2025, promising another exciting chapter of innovation and

collaboration.

Preliminary Round: Teams Gear Up for Submission.

In the Preliminary round of ASC25, teams are encouraged to put forth their best efforts to

complete the assigned tasks and submit comprehensive proposal documentation. Submissions

should include detailed cluster design, source code optimization approaches, and output files. The

ASC25 evaluation committee will rigorously review all proposals in English, ensuring a fair and

thorough assessment.

Submission Guidelines.

Important Deadline. All participating teams must submit the required materials by 24:00, February

21, 2025 (UTC/GMT +8:00).

a) Proposal Submission. Name the proposal using the format: [University/College

Name]_[Contact Person Name] (e.g., ABC_University_John_Doe). Save the proposal as a

single PDF file. Upload the PDF file at the official ASC25 website: https://www.asc-

events.net/StudentChallenge/ASC25/PreliminarySubmission.php

b) Additional Materials. All the additional information should be compressed into one file

using the same naming convention: ABC_University_John_Doe. The compressed file

should include at least four folders, per the requirements detailed in Appendix A. Please

upload the compressed file to the FTP server. The FTP server address will be provided via

email at a later date.

 Output files of HPL

 Output files of HPCG

 Required files of AlphaFold3 inference challenge

 Required files of RNA m5C challenge

c) Submission Confirmation and Support. Ensure all submissions are completed and

submitted on time, adhering to the guidelines, or there will be no grade awarded. A

https://www.asc-events.net/StudentChallenge/ASC25/PreliminarySubmission.php
https://www.asc-events.net/StudentChallenge/ASC25/PreliminarySubmission.php

confirmation email will be sent shortly after all required materials have been successfully

received. For any further inquiries or assistance, please contact:

 Technical Support: techsupport@asc-events.org

 General Information: info@asc-events.org

 Press: media@asc-events.org

The ASC25 Committee extends its best wishes to all teams as you embark on your ASC25 journey.

Appendix A:

Proposal Requirements.

I. Introduction to the university's activities in supercomputing (5 points)

1. Supercomputing-related hardware and software platforms.

2. Supercomputing-related courses, trainings, and interest groups.

3. Supercomputing-related research and applications.

4. A brief description of the key achievements on supercomputing research, no more than 2

items.

II. Team introduction (5 points)

1. Brief description of the team setup.

2. Introduction and the photo of each member, including group photos of the team.

3. Team’s motto or catch-phrase.

III. Technical proposal requirements (90 points)

1. Design of HPC system (15 points)

Participating teams are required to submit a theoretical design of an HPC cluster, rather than

constructing a physical cluster. The designed cluster must meet the following requirements:

a) The system should be designed for optimal computing performance. The cluster must consist

of at least three compute nodes, with a per-node power limit of 2000 W and a total power limit

of 4000 W for all cluster components.

b) Specify the system's software and hardware configurations, as well as its interconnection.

Describe the power consumption, evaluate the performance, and analyze the advantages and

disadvantages of the proposed architecture.

Note: The hardware components listed in the table below are provided for reference only. They are

based on a dual processor server, which supports up to 2 GPUs.

mailto:techsupport@asc-events.org
file:///F:/项目/ASC18/info@asc-events.org
file:///F:/项目/ASC18/media@asc-events.org

Item Name Configuration

Server
Dual Processor

Server

CPU: Intel® Xeon® 6760P Processor * 2

Memory: 32GB * 16, DDR5, 6400 MT/s

Hard disk: 480GB SSD SATA * 1

HCA card NDR200 InfiniBand NVIDIA ConnectX®-7 NDR200

Switch

GbE switch 10/100/1000 MB/s，24 ports Ethernet switch

NDR-IB switch
NVIDIA Quantum (TM)-2 NDR InfiniBand Switch, 64-ports

NDR, 32 OSFP ports, unmanaged, P2C airflow (forward)

Cable

Gigabit CAT6 cables CAT6 copper cable, blue, 3 m

InfiniBand cable
InfiniBand NDR copper cable, OSFP port, compatible with the

InfiniBand switch in use.

Note: The hardware configuration in the ASC25 competition finals may be different from the table above.

2. HPL and HPCG Benchmarks (15 points)

The proposal should include descriptions of the software environment (operating system,

complier, math library, MPI software, software version, etc.), the performance optimization and

testing methods, performance measurement, problem and solution analysis, etc. In-depth analysis

on HPL, HPCG algorithms and the respective source codes would be a plus.

Download the HPL software at: http://www.netlib.org/benchmark/hpl/.

Download the HPCG software at: https://github.com/hpcg-benchmark/hpcg

It is recommended to run verification and optimization of HPL and HPCG benchmarks on x86

CPU and Data Center GPU platforms. If other hardware platforms are used, you are welcomed to

submit the related analysis and results that demonstrate adequate performance.

3. Optimization for AlphaFold3 Inference (30 points)

Task Description

Protein structure prediction is a fundamental and challenging task that has remained a

significant hurdle in biology for half a century. The revolutionary AI model AlphaFold successfully

solved this decades-old scientific challenge with remarkable performance, earning it half of the 2024

Nobel Prize in Chemistry. The latest iteration, AlphaFold3, equipped with novel features, can

accurately predict the structures of complexes involving ligands, proteins, and nucleic acids,

potentially revolutionizing drug discovery, disease treatment, and our understanding of fundamental

biological processes.

http://www.netlib.org/benchmark/hpl/
https://github.com/hpcg-benchmark/hpcg

AlphaFold3 employs a diffusion-based architecture and begins with an input of either an amino

acid sequence or sequences of multiple biomolecules. The process consists of two stages: the data

pipeline and model inference. The data pipeline, running on CPUs, constructs MSAs for protein and

RNA entities using Jackhmmer/Nhmmer searches across genetic databases. The model inference

stage, operating on GPUs, utilizes the MSAs, templates, and original sequences, passing them

through the Pairformer and diffusion modules to generate the predicted structures.

In the Preliminary round, the focus is solely on the model inference stage. The committee

provides twelve samples of single protein sequences along with pre-generated MSAs and templates

as task inputs. There is no need to execute the data pipeline stage. The objective of the preliminary

task is to minimize inference time, focusing on the following two aspects:

(1) Optimize the GPU inference process and minimize the inference time. (10 points)

(2) Migrate the inference codebase from GPU to CPU architecture and optimize it to minimize

the corresponding CPU inference time. (20 points)

For instance, the relevant inference time is 53.76 seconds, as shown on the screen capture, after

running the inference stage.

Featurising 2PV7 with rng_seed 1 took 5.63 seconds.

Featurising data for seeds (1,) took 8.54 seconds.

Running model inference for seed 1...

Running model inference for seed 1 took 53.76 seconds.

Extracting output structures (one per sample) for seed 1...

Extracting output structures (one per sample) for seed 1 took 0.42 seconds.

Running model inference and extracting output structures for seed 1 took 54.19 seconds.

Running model inference and extracting output structures for seeds (1,) took 54.19 seconds.

Writing outputs for 2PV7 for seed(s) (1,)...

Done processing fold input 2PV7.

Done processing 1 fold inputs.

Once AlphaFold3 is installed, one can run the application using the following command to skip

the data pipeline:

cd alphafold

python run_alphafold.py --json_path=json_file_path --model_dir=model_parameter_path --

norun_data_pipeline --output_dir=output_DIR

Upon completion of the inference process, an output directory aligned with the ‘name’ field in

the input file is expected to be generated. Below is an example of an AlphaFold3 output directory

listing for a job named ‘hello_fold’, which was run with one seed.

hello_fold/

├── seed-1_sample-0/

│ ├── confidences.json

│ ├── model.cif

│ └── summary_confidences.json

├── seed-1_sample-1/

│ ├── confidences.json

│ ├── model.cif

│ └── summary_confidences.json

├── seed-1_sample-2/

│ ├── confidences.json

│ ├── model.cif

│ └── summary_confidences.json

├── seed-1_sample-3/

│ ├── confidences.json

│ ├── model.cif

│ └── summary_confidences.json

├── seed-1_sample-4/

│ ├── confidences.json

│ ├── model.cif

│ └── summary_confidences.json

├── TERMS_OF_USE.md

├── hello_fold_confidences.json

├── hello_fold_data.json

├── hello_fold_model.cif

├── hello_fold_summary_confidences.json

└── ranking_scores.csv

Note

(1) AlphaFold3 can be accessed through the GitHub repository https://github.com/google-

deepmind/alphafold3. Note that ASC Committee utilized version 3.0.0 for testing.

(2) The model parameters of AlphaFold3 can be obtained upon request by completing the form:

https://forms.gle/svvpY4u2jsHEwWYS6.

(3) In our case the MSA information is already incorporated within the input files, multiple genetic

(sequence) protein and RNA databases are not needed. The twelve input files can be

downloaded from the ASC repository: https://github.com/ASC-Competition.

Result Submission

After optimization, run all twelve input cases on the GPU and CPU separately, and upload the

corresponding results to the ASC25 official FTP server. Note that the size of the output files will

exceed 1 GB. Therefore, compress the files and name the package AlphaFold3.tar.gz before

uploading. The directory structure is outlined below:

 AlphaFold3

 |___GPU-optimization (script or code files used in the GPU inference process)

 |___GPU-results

|___case_name_1 (Output directory generated during the inference. Use

the default directory name, which corresponds to the ‘name’ field within the input file. The directory

https://github.com/google-deepmind/alphafold3
https://github.com/google-deepmind/alphafold3
https://forms.gle/svvpY4u2jsHEwWYS6
https://github.com/ASC-Competition

structure is resembles to the ‘hello_fold’ example mentioned above and the specific details of this

structure are omitted here for simplicity. The same applies hereinafter for the remaining cases.)

|___case_name_2

|___……

|___case_name_12

|___case_name_1.log (Screen output during inference procedure)

|___case_name_2.log

|___……

|___case_name_12.log

|___SUMMARY_time.out (A summary file that includes the running time

before and after the optimization for all cases.)

 |___CPU-optimization (script or code files used in the CPU inference process)

 |___CPU-results

|___case_name_1

|___case_name_2

|___……

|___case_name_12

|___case_name_1.log

|___case_name_2.log

|___……

|___case_name_12.log

|___SUMMARY_time.out

Evaluation

During the evaluation process, the ASC25 Committee will primarily focus on improvements

in inference performance on both CPU and GPU. Additionally, the detailed optimization strategies

and the underlying principles outlined in the proposal will also serve as a basis for scoring. Below

are a few important points to note:

(1) BF16 is the default precision, and all precision below 16-bit is not allowed.

(2) Do not modify the AlphaFold3 model parameters.

(3) Do not modify the model_config.json file, including but not limited to the recycling

number and diffusion number.

(4) Do not modify the provided input JSON files, including modelSeeds, sequences, and

MSA, etc.

(5) Please maintain the directory structure and the resulting files unchanged. Do not alter

the output files of the original AlphaFold3, including but not limited to the structure

files and confidence files.

(6) Both the inference speed and the accuracy of structure prediction hold significance in

the evaluation. Evidently unphysical structures will result in a deduction of points.

(7) The submitted inference log files must contain details such as the prediction start time,

time consumption for each stage (including inference, extracting output structures, etc.),

and other essential elements of the inference process.

(8) Participants are required to provide comprehensive details about the model inference

process, machine specifications, environment setup, optimization methods used, and

performance comparison in the proposal. These details will serve as the primary basis

for scoring by the ASC25 Committee.

(9) Participants must submit all the required files as specified above; otherwise, the score

for this part will be set to 0.

4. RNA m5C Modification Site Detection and Performance Optimization Challenge (30 points)

Task Description

RNA molecules undergo various chemical modifications that significantly influence gene

expression regulation, post-transcriptional processes, and protein translation. To date, over 170

types of modifications have been identified in RNAs. Among these, 5-methylcytosine (m5C) is a

key modification, widely distributed across diverse RNA species and playing a critical role in gene

expression and its regulation.

With the advent of high-throughput sequencing (HTS) technologies, several methods—such as

RNA-Bis-seq and UBS-seq—have been developed to detect m5C at single-base resolution. However,

most of these methods rely on the base-conversion signal from cytosine (C) to thymine (T), which

inherently increase the risk of generating high false-positive rates. Balancing the accuracy and

reliability of m5C detection while minimizing false positives remains a key challenge in current m5C

research.

This task involves implementing a workflow that systematically incorporates a suite of

bioinformatics software packages specifically designed to detect RNA m5C in HTS data. The

objective is to refine the provided analysis pipelines to enhance the accuracy and reliability of m5C

site detection while minimizing runtime. Evaluation criteria for this task will emphasize the

precision of m5C site identification, control of false positives, and computational efficiency.

It is important to note that, unlike workflows that rely on a single tool, this task integrates

multiple software components. Starting from raw sequencing data (FASTQ files), the pipeline

performs adapter trimming, low-quality sequence removal, rRNA/tRNA filtering, genome

alignment, m5C site detection, and stringent filtering. The final output is a high-confidence list of

m5C candidate sites with both high precision and low false-positive rates.

The reference paper: Dai, Q., Ye, C., Irkliyenko, I. et al. Ultrafast bisulfite sequencing detection of

5-methylcytosine in DNA and RNA. Nat Biotechnol 42, 1559–1570 (2024).

https://doi.org/10.1038/s41587-023-02034-w

The reference code: https://github.com/y9c/m5C-UBSseq

In addition, the main analysis workflows are provided under the docs directory. Also, the “Snakefile”

is very useful.

Main analysis workflow

https://github.com/y9c/m5C-UBSseq

Datasets

Link to raw input data: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE225614

It is recommended to use the SRA Toolkit to download and extract datasets.

Guidelines for the procedures

(1) Reference Index Construction: Build separate indices for rRNA, tRNA and the genome after

performing a C→T base replacement in the reference, ensuring compatibility with subsequent

C→T-based detection steps.

Input: rRNA, tRNA and genome reference sequence

Output: rRNA index, tRNA index, genome index, plus corresponding FAI and SAF files for

future alignment and variant calling.

(2) Data Cleaning: Remove adapter sequences, trim low-quality bases, and process poly(A) tails,

resulting in clean reads for downstream analysis.

Input: Raw FASTQ files

Output: Cleaned FASTQ files, a record of reads removed for being too short, and any

untrimmed reads.

(3) rRNA Alignment: Align the cleaned reads to the rRNA reference to remove rRNA

contamination.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE225614

Input: Cleaned FASTQ files.

Output: Reads mapped to rRNA, unmapped reads, alignment statistics, unmapped FASTQ.

(4) tRNA Alignment: Filter out tRNA contamination by aligning unmapped reads from the rRNA

alignment step to a tRNA reference.

Input: FASTQ reads unmapped to rRNA.

Output: Reads mapped to tRNA, unmapped reads, alignment statistics, unmapped FASTQ.

(5) Genome Alignment: Align the rRNA- and tRNA-filtered reads to the genome reference (built

with C→T indexes).

Input: FASTQ reads unmapped to rRNA/tRNA.

Output: Genome-aligned reads, unmapped reads, alignment statistics.

(6) Sorting BAM Files: Sort the BAM files for easier downstream processing

Input: Aligned BAM files.

Output: Sorted BAM files.

(7) Merging, Statistics, and Deduplication: Merge sorted alignments, calculate alignment statistics,

and remove duplicate reads that might inflate false-positive signals.

Input: Sorted BAM files

Output: (i) Merged alignment statistics (TSV), (ii) deduplicated BAM files, and corresponding

log files.

After deduplication, index the final BAM (.bam.bai).

(8) Site Calling and Filtering: Identify candidate C→T conversion sites. Use separate “unfiltered”

and “filtered” conditions to categorize unique vs. multi-mapped reads.

Input: Deduplicated BAM files

Output: Four TSV files containing statistics for each condition: unfiltered_uniq,

unfiltered_multi, filtered_uniq, filtered_multi

join_pileup: For each sample, consolidate base count information (converted vs. unconverted)

from the four conditions into a single file.

Script: join_pileup.py

Input: The four TSV outputs (unfiltered_uniq, unfiltered_multi, filtered_uniq, filtered_multi)

Output: One .arrow file, merging the base count data based on ref, pos, and strand.

group_pileup: Merge data across multiple replicates (all samples in one group), compute

coverage and key metrics for each site, and identify preliminary m5C candidates at the group level.

Script: group_pileup.py

Input: .arrow files from multiple samples in the same group

Output: A single .arrow containing combined coverage and ratio metrics.

Calculated Metrics:

u: Sum of unconverted base counts under filtered_uniq across all samples

d: Total coverage (converted + unconverted) under filtered_uniq across all samples

ur: Unconverted ratio, u / d

mr: Multiple-mapping ratio, unfilter_multi / (unfilter_multi + unfilter_uniq)

cr: “Cluster ratio,” proportion of reads lost when moving from unfiltered to filtered conditions.

1 −
filtered_multi + filtered_uniq

unfiltered_multi + unfiltered_uniq

combined_select_sites：Apply preliminary thresholds to identify candidate m5C sites.

Script: select_sites.py

Input: Per-group .arrow files

Output: A .tsv file listing candidate m5C sites (only retaining essential columns such as ref, pos,

strand).

Filtering Criteria (for each site):

d >= TOTAL_DEPTH (default ≥ 20)

u >= TOTAL_SUPPORT (default ≥ 3)

ur >= AVERAGE_UNC_RATIO (default ≥ 0.02)

cr < AVERAGE_CLU_RATIO (default < 0.5)

mr < AVERAGE_MUL_RATIO (default < 0.2)

stat_sample_background: Perform background estimation and statistical testing (binomial test)

for each sample to confirm final m5C candidates.

Script: filter_sites.py

Input:

The .arrow files from join_pileup for each sample

The .tsv candidate sites from combined_select_sites

Output:

A file storing the global background methylation ratio (bg_ratio) for each sample.

A file listing each site’s final detection result, including ref, pos, strand, u, d, ur, pval, and a

boolean passed column.

Logic:

Background Estimation: Remove all candidate sites from the dataset and calculate the average

unconverted ratio (ur) from the remaining positions to get bg_ratio.

Significance Testing: Perform a binomial test for each candidate site.

If pval < 0.001 and (u >= 2), (d >= 10), (ur > 0.02), the site is called m5C in that sample.

(9) Combine Across Replicates: Retain only sites with p-value < 10-6 across all three replicates as

final m5C sites.

Processing Software Guidance and Parameters

The following are the recommended process and parameter guidelines, which can be adjusted

appropriately according to the actual amount of data and computing resources:

(1) Construction of the reference index:

Software: hisat3n-build, samtools

Recommended parameters (hisat3n-build): -p 12 --base-change C,T

(2) Data cleaning

Software: cutseq

Recommended parameters: -t 20 -A INLINE -m 20 --trim-polyA --ensure-inline-barcode

(3) rRNA, tRNA filtering and genome alignment

Software: hisat3n, samtools

Parameters for rRNA and tRNA alignment (hisat3n): --base-change C,T --mp 8,2 --no-spliced-

alignment --directional-mapping

Parameters for genome alignment (hisat3n): --base-change C,T --pen-noncansplice 20 --mp 4,1

--directional-mapping

(4) Sorting and deduplication

Software: samtools sort, java + umicollapse.jar

Recommended parameters (samtools): -@ 20 -m 3G --write-index

Recommended parameters (umicollapse): bam -t 2 -T 20 --data naive --merge avgqual --two-

pass

(5) Site calling and filtering

Software: samtools view, hisat3n-table, bgzip

Main parameters (samtools): -e "rlen<100000"

Main parameters (hisat3n-table): -p N, -u/-m, --alignments, --ref..., --base-change C,T

Main parameters (samtools view): -@ 10, -e "[XM]20 <= (qlen-sclen) && [Zf] <= 3 && 3[Zf]

<= [Zf]+[Yf]"

(6) The following scripts can be found on GitHub in details.

Script Name Function Description
Dependent

Packages
Main Methods

join_pileup.py

Integrate the statistical

information of the same sample

under different conditions.

argparse, polars
pl.read_csv, pl.join,

pl.fill_null

group_pileup.py

Integrate the statistical

information of multiple samples

in the same group, calculate key

indicators.

argparse, polars
pl.read_ipc, pl.join,

pl.sum_horizontal

select_sites.py

Conduct a preliminary screening

on the group statistical results,

filter out the sites that do not meet

the thresholds, and output the

candidate sites.

argparse, polars
pl.read_ipc, pl.filter,

pl.unique

Filter_sites.py

Calculate the proportion of the

background that has not been

converted, conduct a significance

test, and screen the final m5C

candidate sites.

argparse, polars,

scipy

pl.join,

pl.with_columns,

binomtest

UBS-seq reference code: https://github.com/y9c/m5C-UBSseq

Results Submission

(1) Workflow description file

Includes intermediate file names (e.g., alignment rates and QC summaries).

Code Documentation: If any script or program was modified, provide a file explaining the

changes and the rationale.

In addition, the running time of each step in the workflow should also be provided, the "time"

command can be used to obtain the execution time of each step.

(2) m5C sites file

Filtered TSV files of three datasets, for example, SRR23538290.filtered.tsv,

SRR23538291.filtered.tsv and SRR23538292.filtered.tsv.

(3) Software Packaging

https://github.com/y9c/m5C-UBSseq

Packaging the entire workflow into a single software tool or container (e.g., using conda to

encapsulate all environment configurations and software settings) would streamline the installation

and execution process, reduce environment-related errors, and promote reproducibility.

(4) Record and submit the time elapsed from the start of "cutseq" to the end of the workflow by

means of screenshots.

(5) Please compress all the required files and name the package as RNA.tar.gz.

Result Evaluation

Precision: Proportion of correctly detected sites (true positives, TP) among all detected sites.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Where TP are the sites matching the standard answer and FP are those not in the standard.

Reference Shell Code:

Precision=$(awk 'NR==FNR {a[$1,$2,$3]=1; next} ($1,$2,$3) in a' "true.tsv" "detected.tsv" |

wc -l | awk -v total=$(wc -l < "$detected_file") '{printf "%.2f", ($1/total)*100}')

Correlation: Calculating the Pearson correlation of unconverted ratios (ur) for the overlap sites

between the participant’s detected sites and the true sites.

r =
∑ (𝑢𝑟true,𝑘 − 𝑢𝑟true̅̅ ̅̅ ̅̅ ̅)(𝑢𝑟detected,𝑘 − 𝑢𝑟detected̅̅ ̅̅ ̅̅ ̅̅ ̅̅)𝑛
𝑘=1

√∑ (𝑢𝑟true,𝑘 − 𝑢𝑟true̅̅ ̅̅ ̅̅ ̅)
2𝑛

𝑘=1
√∑ (𝑢𝑟detected,𝑘 − 𝑢𝑟detected̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

2𝑛
𝑘=1

Reference Shell Code:

paste true_ur.txt detected_ur.txt | awk '{

 sumXY += $1 * $2;

 sumX += $1;

 sumY += $2;

 sumX2 += $1 * $1;

 sumY2 += $2 * $2;

 n++;

} END {

 print (n * sumXY - sumX * sumY) / (sqrt(n * sumX2 - sumX^2) * sqrt(n * sumY2 - sumY^2))

}'

Accuracy: Must meet specified thresholds of precision (>=95%) and correlation (>=90%) with the

standard reference set of m5C sites.

Performance Optimization: Once the accuracy requirements are met, performance improvement

will become a key focus in the evaluation process. The proposal should include detailed

optimization strategies.

Workflow Example:

(1) Build indexes for the reference genome and non-coding RNA (ncRNA):

(2) The data processing workflow (stage 1) for one of the samples:

hisat-3n/hisat-3n-build -p 32 --base-change C,T /asc25/ref/Homo_sapiens.GRCh38.dna.primary_ass

embly.fa /asc25/ref/Homo_sapiens.GRCh38.dna.primary_assembly.fa

samtools-1.21/samtools faidx /asc25/ref/Homo_sapiens.GRCh38.dna.primary_assembly.fa

awk 'BEGIN{{OFS="\\t"}}{{print $1,$1,0,$2,"+"}}' /asc25/ref/Homo_sapiens.GRCh38.dna.primary_ass

embly.fa.fai >Homo_sapiens.GRCh38.dna.primary_assembly.fa.saf

hisat-3n/hisat-3n-build -p 16 --base-change C,T /asc25/ncrna_ref/Homo_sapiens.GRCh38.ncrna.fa

/asc25/ncrna_ref/Homo_sapiens.GRCh38.ncrna.fa

samtools-1.21/samtools faidx /asc25/ncrna_ref/Homo_sapiens.GRCh38.ncrna.fa

cutseq /asc25/SRR23538290/SRR23538290.fastq -t 20 -A INLINE -m 20 --trim-polyA --ens

ure-inline -barcode -o /asc25/SRR23538290/SRR23538290.fastq_cut -s /asc25/SRR235382

90/SRR23538290.fastq_tooshort -u /asc25/SRR23538290/SRR23538290.fastq_untrimmed

hisat-3n/hisat-3n --index /asc25/ncrna_ref/Homo_sapiens.GRCh38.ncrna.fa --summary-file /

asc25/SRR23538290/map2ncrna.output.summary --new-summary -q -U /asc25/SRR2353829

0/SRR23538290.fastq_cut -p 16 --base-change C,T --mp 8,2 --no-spliced-alignment --dire

ctional -mapping | /asc25/samtools-1.21/samtools view -@ 16 -e '!flag.unmap' -O BA

M -U /asc25/SRR23538290/SRR23538290.ncrna.unmapped.bam -o /asc25/SRR23538290/SR

R23538290.ncrna.mapped.bam

samtools-1.21/samtools fastq -@ 16 -O /asc25/SRR23538290/SRR23538290.ncrna.unmappe

d.bam >/asc25/SRR23538290/SRR23538290.mRNA.fastq

hisat-3n/hisat-3n --index /asc25/ref/Homo_sapiens.GRCh38.dna.primary_assembly.fa -p 16

--summary-file /asc25/SRR23538290/map2genome.output.summary --new-summary -q -U /

asc25/SRR23538290/SRR23538290.mRNA.fastq --directional-mapping --base-change C,T --pe

n-noncansplice 20 --mp 4,1 | samtools-1.21/samtools view -@ 16 -e '!flag.unmap' -O B

AM -U /asc25/SRR23538290/SRR23538290.mRNA.genome.unmapped.bam -o /asc25/SRR23

538290/SRR23538290.mRNA.genome.mapped.bam

samtools-1.21/samtools sort -@ 16 --write-index -O BAM -o /asc25/SRR23538290/SRR23

538290.mRNA.genome.mapped.sorted.bam /asc25/SRR23538290/SRR23538290.mRNA.geno

me.mapped.bam

samtools-1.21/samtools view -@ 20 -F 3980 -c /asc25/SRR23538290/SRR23538290.mRNA.

genome.mapped.sorted.bam >/asc25/SRR23538290/SRR23538290.mRNA.genome.mapped.so

rted.bam.tsv

java -server -Xms8G -Xmx40G -Xss100M -Djava.io.tmpdir=/asc25/SRR23538290 -jar /asc25

/UMICollapse-1.0.0/umicollapse.jar bam -t 2 -T 16 --data naive --merge avgqual --two-pa

ss -i /asc25/SRR23538290/SRR23538290.mRNA.genome.mapped.sorted.bam -o /asc25/SRR2

3538290/SRR23538290.mRNA.genome.mapped.sorted.dedup.bam > /asc25/SRR23538290/SR

R23538290.mRNA.genome.mapped.sorted.dedup.log

samtools-1.21/samtools index -@ 8 /asc25/SRR23538290/SRR23538290.mRNA.genome.map

ped.sorted.dedup.bam /asc25/SRR23538290/SRR23538290.mRNA.genome.mapped.sorted.de

dup.bam.bai

samtools-1.21/samtools view -e "rlen<100000" -h /asc25/SRR23538290/SRR23538290.mRN

A.genome.mapped.sorted.dedup.bam | hisat-3n/hisat-3n-table -p 16 -u --alignments - --r

ef /asc25/ref/Homo_sapiens.GRCh38.dna.primary_assembly.fa --output-name /dev/stdout --

base-change C,T | cut -f 1,2,3,5,7 | gzip -c > /asc25/SRR23538290/SRR23538290_unfilter

ed_uniq.tsv.gz

The above workflow needs to be executed for each dataset.

(3) The data processing workflow (stage 2):

samtools-1.21/samtools view -e "rlen<100000" -h /asc25/SRR23538290/SRR23538290.mRNA.genom

e.mapped.sorted.dedup.bam | hisat-3n/hisat-3n-table -p 16 -m --alignments - --ref /asc25/ref/H

omo_sapiens.GRCh38.dna.primary_assembly.fa --output-name /dev/stdout --base-change C,T | cut -

f 1,2,3,5,7 | gzip -c > /asc25/SRR23538290/SRR23538290_unfiltered_multi.tsv.gz

samtools-1.21/samtools view -@ 8 -e "[XM] * 20 <= (qlen-sclen) && [Zf] <= 3 && 3 * [Zf] <=

[Zf] + [Yf]" /asc25/SRR23538290/SRR23538290.mRNA.genome.mapped.sorted.dedup.bam -O BAM -

o /asc25/SRR23538290/SRR23538290.mRNA.genome.mapped.sorted.dedup.filtered.bam

samtools-1.21/samtools view -e "rlen<100000" -h /asc25/SRR23538290/SRR23538290.mRNA.genom

e.mapped.sorted.dedup.filtered.bam | /asc25/hisat-3n/hisat-3n-table -p 16 -u --alignments - --ref /

mnt/nvme2n1/asc25/ref/Homo_sapiens.GRCh38.dna.primary_assembly.fa --output-name /dev/stdout

--base-change C,T | cut -f 1,2,3,5,7 | gzip -c > /asc25/SRR23538290/SRR23538290_filtered_uniq.

tsv.gz

samtools-1.21/samtools view -e "rlen<100000" -h /asc25/SRR23538290/SRR23538290.mRNA.genom

e.mapped.sorted.dedup.filtered.bam | hisat-3n/hisat-3n-table -p 16 -m --alignments - --ref /asc25/

ref/Homo_sapiens.GRCh38.dna.primary_assembly.fa --output-name /dev/stdout --base-change C,T |

cut -f 1,2,3,5,7 | gzip -c > /asc25/SRR23538290/SRR23538290_filtered_multi.tsv.gz

python m5C-UBSseq-main/bin/join_pileup.py -i /asc25/SRR23538290/SRR23538290_unfiltered_uniq.ts

v.gz /asc25/SRR23538290/SRR23538290_unfiltered_multi.tsv.gz /asc25/SRR23538290/SRR23538290_fi

ltered_uniq.tsv.gz /asc25/SRR23538290/SRR23538290_filtered_multi.tsv.gz -o /asc25/SRR23538290/S

RR23538290_genome.arrow

Note

(1) Any changes to the original sequencing data files are strictly prohibited.

(2) The final output files and log files must remain unmodified.

(3) Optimize and minimize the elapsed time of the workflow as much as possible on the premise

that the process and results are correct.

For any further questions, please contact techsupport@asc-events.org

--End--

python /asc25/m5C-UBSseq-main/bin/group_pileup.py -i ./SRR23538290/SRR23538290_genome.arr

ow ./SRR23538291/SRR23538291_genome.arrow ./SRR23538292/SRR23538292_genome.arrow -o

WT.arrow

python m5C-UBSseq-main/bin/select_sites.py -i ./WT.arrow -o ./WT.prefilter.tsv

python ./m5C-UBSseq-main/bin/filter_sites.py -i ./SRR23538290/SRR23538290_genome.arrow -

m ./WT.prefilter.tsv -b ./SRR23538290/SRR23538290.bg.tsv -o ./SRR23538290/SRR23538290.filtere

d.tsv

python ./m5C-UBSseq-main/bin/filter_sites.py -i ./SRR23538291/SRR23538291_genome.arrow -

m ./WT.prefilter.tsv -b ./SRR23538291/SRR23538291.bg.tsv -o ./SRR23538291/SRR23538291.filtere

d.tsv

python ./m5C-UBSseq-main/bin/filter_sites.py -i ./SRR23538292/SRR23538292_genome.arrow -

m ./WT.prefilter.tsv -b ./SRR23538292/SRR23538292.bg.tsv -o ./SRR23538292/SRR23538292.filtere

d.tsv

file:///F:/项目/ASC18/techsupport@asc-events.org

